Inhibition of oxygen evolution in chloroplasts isolated from leaves with low water potentials.

نویسندگان

  • J S Boyer
  • B L Bowen
چکیده

Chloroplasts were isolated from pea and sunflower leaves having various water potentials. Oxygen evolution by the chloroplasts was measured under identical conditions for all treatments with saturating light and with dichloroindophenol as oxidant. Evolution was inhibited when leaf water potentials were below -12 bars in pea and -8 bars in sunflower and the inhibition was proportional to leaf water potential below these limits. Inhibition was more severe in sunflower than in pea chloroplasts. In sunflower, it could be detected after 5 minutes of leaf desiccation, and, up to 1 hour, the effect was independent of the duration of low leaf water potential.In high light, the reduction in activity of sunflower chloroplasts paralleled the reduction in CO(2) fixation by intact sunflower plants having low leaf water potentials. Stomatal apertures and transpiration rates were also reduced under these conditions and were probably limiting. In low light, intact sunflowers required more light per unit of CO(2) fixed when leaf water potentials were low than when they were high. This increased light requirement in the intact system was of a magnitude which could be predicted from the reduced oxygen evolution by the isolated chloroplasts. It was concluded that moderately low leaf water potential affects photosynthesis in at least two ways: first, through an inhibition of oxygen evolution by chloroplasts and, second, by closure of stomata in intact leaves.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conformation and activity of chloroplast coupling factor exposed to low chemical potential of water in cells.

(1) Photophosphorylation, Ca2+-ATPase and Mg2+-ATPase activities of isolated chloroplasts were inhibited 55--65% when the chemical potential of water was decreased by dehydrating leaves to water potentials (psi w) of --25 bars before isolation of the plastids. The inhibition could be reversed in vivo by rehydrating the leaves. (2) These losses in activity were reflected in coupling factor (CF1)...

متن کامل

Response of carbon dioxide fixation to water stress: parallel measurements on isolated chloroplasts and intact spinach leaves.

Application of water stress to isolated spinach (Spinacia oleracea) chloroplasts by redutcion of the osmotic potentials of CO(2) fixation media below -6 to -8 bars resulted in decreased rates of fixation regardless of solute composition. A decrease in CO(2) fixation rate of isolated chloroplasts was also found when leaves were dehydrated in air prior to chloroplast isolation. An inverse respons...

متن کامل

OXYGEN EVOLUTION IN PHOTOSYNTHESIS 683 Chloride Requirement for Oxygen Evolution in Photosynthesis

The role of chloride in photosynthetic oxygen evolution was reinvestigated by determining the effect of this ion on photochemical reactions of chloroplasts in which oxygen either is or is not produced. The chloroplasts used were isolated from normal spinach leaves. The level of chloride in the reaction mixture was controlled by washing the isolated chloroplasts and by avoiding a chloride contam...

متن کامل

Inhibition of oxygen evolution in chloroplasts by ferricyanide.

Preincubation of chloroplasts from pea leaves (Pisum sativum L. cv. Kelvedon) with 0.5 millimolar ferricyanide in the dark, caused a parallel inhibition of the rate of rise of the variable fluorescence and the rate of electron transport. Both reactions were inhibited to a similar extent by varying the time of preincubation, the concentration of ferricyanide during preincubation, and by raising ...

متن کامل

Xxxvi. Studies on Chloroplasts I. Separation of Chloroplasts, a Study of Factors Affecting Their Flocculation and the Calculation of the Chloroplast Content of Leaf Tissue from Chemical Analysis1

A NUMBER of references to experiments conducted with isolated chloroplasts are to be found in the literature. Englemann [1881] detected the evolution of oxygen by isolated chloroplasts and Ewart [1896] observed that they maintained their activity for some time after removal from the cell. Chloroplasts have been isolated from Stellaria media by Hill [1937] and from the leaves of the tomato plant...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 45 5  شماره 

صفحات  -

تاریخ انتشار 1970